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INTRODUCTION

Research on learning and memory has been driven by models since at least the
1940s. Over the years, the emphasis in mathematical modeling has shifted
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206 RAAIJMAKERS & SHIFFRIN

from precise fitting of single experiments to what might be best described as
semi-quantitative fitting of a wide variety of phenomena from a number of
experimental paradigms [compare for instance Bower’s one-element model
(Bower 1961) to any of the current models such as ACT* (Anderson 1983b),
SAM (Raaijmakers & Shiffrin 1981; Gillund & Shiffrin 1984) or TODAM
(Murdock t982)].

The complexities of recent models contributes to the apparent impossibility
of deciding between them. Although couched in quite different terms, they
often make very similar predictions, at least under appropriate choices of
parameters. This makes it difficult to generate critical empirical tests. On the
other hand, the similarity of predictions suggests real progress in theory
development, forced by the necessity to account for a standard and agreed
upon corpus of findings.

In this chapter, we review a number of the most important contemporary
models of memory, trying to highlight the similarities and differences in the
way they handle basic facts about recall and recognition. Space limitations
prevent us from any attempt at exhaustive coverage. For the same reason,
although a number of models can or do predict response latencies, we leave
coverage of this important topic to a future chapter.

Theoretical Approaches

Although all classifications are to some degree unsatisfactory, we group
current models into three categories: 1. separate-trace models involving
spreading activation, or making no explicit activation assumptions--we term
these network models; 2. separate-trace models involving parallel activation,
here termed episodic trace models; and 3. composite~distributed memory
models.

Network Models

Network models propose that long-term memory consists of a set of nodes
with links connecting the nodes. The nodes represent concepts or cognitive
units (Anderson 1983a,b), the links semantic or episodic relations. Whenever
two items are studied together, a link between the nodes representing these
items may be formed. In most of these models, a process of spreading
activation determines the retrieval of information from memory. Basically,
there are two types of network model: (a) the all-or-none activation model,
and (b) the continuous activation model.

The all-or-none activation model assumes that network nodes are either
active or inactive. The best known example is the ACTE model proposed by
Anderson (1976). In such a model, the spreading of activation is determined

by the (relative) strength of the nodes or the links. Suppose that two nodes, 
and Y, are connected by a link l. If node X is active, the probability of
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activating Y in the next unit of time is a function of s/S, the relative strength of
the link l compared to all other links emanating from X, or, alternatively, the
relative strength of node Y compared to all other nodes linked to X. In such a
model, the probability of retrieving Y, given that X is active, is equal to the
likelihood that Y is activated before a specified cutoff time.

A continuous activation model was developed by Anderson (1983a,b) as 
alternative to the all-or-none model. The basic difference is that network
nodes now have a continuously varying activation strength. This means that
one needs a different rule for determining whether a memory trace has been
successfully retrieved. If a stimulus node X has an associative link to another
node Y, some activation will spread from X to Y. The amount of activation of
Y is determined by the relative strength of the link between X and Y (compared
to all other links from X). In such a model it becomes more natural to assume
that the probability and latency of retrieving the trace Y are a function of the
amount of activation of Y. Thus, the notion of spreading activation has
changed from gradually activating connected nodes (i.e. distant nodes take
longer to activate) to a dynamic model in which the activation spreads rapidly
over the network but in varying degrees (i.e. distant nodes have a lower level
of activation).

As an example, in the most recent version of Anderson’s ACT theory, the
ACT* model (Anderson 1983b), it is assumed that during storage memory
traces (called cognitive units) are formed. Traces vary in strength (a function
of the number of presentations and the retention interval), and these strengths
determine the amount of activation that converges on the trace from associ-
ated nodes (thus, in this model, it is relative node strength, not link strength,
that determines the flow of activation; it is not evident whether this makes a
difference). Thus, in a paired-associate recall situation, where the subject
learns a list of pairs A-B, it is assumed that the trace (the cognitive unit)
encodes the information that this pair was presented in this context. At test,
the response will be retrieved if (a) such a trace has indeed been formed, and
(b) it can be retrieved within the cutoff time.

Episodic Trace Models

The basic characteristic of episodic trace models is that they assume a set of
separately stored memory traces that are activated in parallel. Such models are
sometimes called "search models" because recall requires that some one of
these traces must be "found" and output. In one subclass of models, recall
of information from long-term memory involves sequential samples from a
set of memory traces. The best-known example of such a model is the
Search of Associative Memory (SAM) model proposed by Raaijmakers
& Shiffrin (1980, 1981). In SAM the sampling probability of a particular
trace depends on the relative strength of that trace compared to all other
memory traces.
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208 RAAIJMAKERS & SHIFFRIN

The SAM model assumes that during storage, information is represented in
"memory images," which contain item, associative, and contextual informa-
tion. The amount and type of information stored are determined by coding
processes in short-term store (STS). In most (intentional) learning paradigms
the amount of information stored is a function of the length of time that the
item is studied while in STS. According to the SAM model, retrieval from
long-term store (LTS) is based on cues (context, items, category names).
Whether an image is retrieved or not depends on the associative strengths of
the retrieval cues to that image. These strengths are a function of the overlap
of the cue information and the information stored in the image.

An important property of the SAM model is that it incorporates a rule to
describe the overall strength of a set of probe cues to a particular image: The
overall activation strength (A(i)) is equal to product of the individual cue
strengths (weighted if necessary for relative salience or importance). This
multiplicative feature focuses the search process on those images that are
strongly associated to all cues.

In recall tasks, the search process of the SAM model is based on a series of
elementary retrieval attempts. Each attempt involves selecting or sampling
one image based on the relative activation strengths. Sampling an image
allows recovery of information from it. For simple recall tasks, the probability
of successfully recovering the name of the encoded word is assumed to be a
simple function of the weighted strengths.

Although the SAM model assumes that the process of activating informa-
tion is basically the same in recall and recognition, it postulates some impor-
tant differences between these two processes. It is assumed that recognition
does not necessarily involve sequential sampling but is (mostly) based on 
direct-access process involving a single retrieval step (Gillund & Shiffrin
1984:55-56). The recognition decision in this direct access process is based
on the sum (E A(k)) of the activation strengths; if the same cues are used to
probe memory for recall and recognition, the activations are the same in both
cases, though used in different ways. As we shall see, the process of summing
activations makes the SAM model for recognition remarkably similar in
structure to models that appear quite different on the surface, even models
(e.g. most composite, distributed models) that sum inputs at storage rather
than retrieval.

Because an "old" response is made when ~ A(k) is greater than a criterion
value, the distribution of the sum determines performance. For this reason,
SAM incorporates specific variance assumptions; in particular, the standard
deviation of the distribution of a given strength is assumed to be proportional
to the mean strength value (Gillund & Shiffrin 1984; Shiffrin et al 1990).

The SAM model assumes that for typical episodic-memory tasks, con-
textual information is always encoded in the memory image, and context is
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one of the retrieval cues. Mensink & Raaijmakers (1988, 1989) proposed 
extension of the SAM model to handle time-dependent changes in context.
The basic idea, adapted from Stimulus Sampling Theory (Estes 1955), is that
a random fluctuation of elements occurs between two sets, a set of available
context elements and a set of (temporarily) unavailable context elements.
Performance is a function of the relationship between sets of available ele-
ments at different points in time (i.e. study and test trials).

Hintzman (1984, 1986, 1988) developed a model for episodic memory
similar to Gillund & Shiffrin’s SAM model for recognition. This model,
MINERVA 2, has been applied primarily to category learning and recognition
memory. It is assumed that each experience produces a separate memory
trace. Both items and memory traces are represented as lists of features or
vectors. In simulations of the model, it has been assumed that each feature is
independently encoded with probability L, a learning rate parameter. When a
probe cue is presented, all memory traces are activated in parallel. The
amount of activation of any particular trace is a nonlinear function of the
similarity to the probe cue.

As in the SAM model, recognition performance in MINERVA 2 depends
on a single value, the summed activation of all traces. In order to allow recall
to be carried out, the model also stipulates that a vector is retrieved. This
vector (called the echo) is the sum of all trace vectors, each weighted by its
activation value. Because of the weighting, and the nonlinear activation rule,
the echo will contain a disproportional representation of those traces similar to
the memory probe. Thus, if part of trace j is used as a probe, the echo will
contain a strong representation from the entire trace j. For example, if a trace
encodes a studied pair A-B, and A is used as a probe, the echo will contain
something similar to A-B, allowing B to be recalled. Of course, the retrieved
trace is actually a composite of many traces (unlike the SAM model), so some
mechanism is needed to extract some particular item from the composite--
Hintzman (1986, 1988) discusses several possibilities, such as comparing the
echo to the stored traces, or repeating the retrieval process several times, each
time using the retrieved echo as a probe, until the echo achieves a stable value
(usually matching some stored trace). In any event, one basic difference
between SAM and MINERVA 2 is that the latter model assumes that in recall
a kind of composite memory trace is retrieved (at least initially), whereas the
SAM model for recall holds that a specific memory trace is sampled (initially,
though different traces may be sampled subsequently).

Distributed Memory Models

In recent years, composite/distributed memory models have enjoyed a rapidly
growing popularity. [For additional discussion we refer the reader to a recent
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Annual Review chapter by Hintzman (1990)]. These models fall in two related
but somewhat different classes. In one class, items are represented by vectors
(as in MINERVA 2) or matrixes of elementary features and the memory
consists of a sum of the vectors or matrixes [e.g. TODAM (Murdock 1982),
CHARM (Eich 1982; 1985), James Anderson’s vector model (Anderson
1973), and the Matrix model (Pike 1984; Humphreys et al 1989); Kanerva’s
SDM model (Kanerva 1988) falls part way between this class and the separate
storage class of the previous section]. In the second class, memory consists of
nodes connected by weighted links; items are represented by a pattern or set of
activations of the nodes, and long-term memory consists of the values of the
weights on the links [e.g. Grossberg’s ART model (Grossberg 1987; Gross-
berg & Stone 1986), James Anderson’s BSB model (J. A. Anderson et 
1977), McClelland & Rumelhart’s recurrent model, or any of the feedforward
back-propagation models].

The basic difference between such models and the models discussed pre-
viously is that composite/distributed memory models assume that a memory
trace is not a distinct, localized entity but rather part of a combination or
superimposition of all traces input to the system. It is this aspect that has made
many of these models seem both mysterious to the novice (who wonders how
memory can be as good as it is) and attractive to many experts (who can
explain why memory is as bad as it is, and how we can extract averages and
prototypes from inputs, and who like the analogy to neuronal structures).

These composite/distributed storage assumptions can serve as a basis for a
memory model because for each version there exists an appropriate retrieval
operation. In some cases the cue will retrieve a noisy version of the original
trace containing that cue; in other cases the cue will retrieve a noisy version of
an item originally stored as an associate of the cue; in yet other cases the
retrieval may be a clearly definable response, but with a type of noise
determining the probability of reaching such a state, and determining whether
the state would be the correct one. The retrieved information can be matched
against the input to perform recognition, or if necessary can be "cleaned up"
in some fashion to allow a response to be emitted.

As an example, consider one version of the Matrix model proposed by
Anderson et al (1977; termed BSB for "brain state in a box"). Whenever two
items (fi, gl) are associated, a matrix Ai is produced with cell elements Ai(r,s)
= fi(r)gi(s). The composite memory (M) consists of the sum of all 
association matrixes, M = Y, Ai. Ignoring for simplicity the details of the
node activation process (such as its nonlinear limitations on activation
growth), the retrieval of an associate (gi) given a cue item (fl) can be obtained
by postmultiplying M with fi: the result, Mfi, is a noisy composite of those
vectors that had been studied with both fi and items similar to f~ (see Anderson
et al 1977:417). Although this model is formulated specifically for paired-
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associate recall, a simple modification will handle recognition memory. The
basic idea is that recognition involves a matching operation of the composite
memory trace with the to-be-recognized item. In order for this to work, it
must be assumed that the memory trace includes not only associative informa-
tion but also item information.

Although we have ignored the short-term activation features of the BSB
model, it is a member of our second class. We begin our discussion of the first
class with a model closely related to Anderson’s but without a node activation
process (and its nonlinear limit on activation values). This is the Matrix model
proposed by Pike (1984; see also Humphreys et al 1989a,b). Associations 
item vectors are represented by matrixes to form a composite memory matrix.
In recent versions of this model, context-to-item associations have been
incorporated in the matrix model in order to account for the fact that memory
of a to-be-memorized list is to some extent "isolated" from all other memor-
ies. Thus, instead of storing a two-way association between the members of a
paired associate, a three-way association among the two items and the context
is stored (in the form of a 3-dimensional matrix). In order to retrieve gi the
memory matrix (M) is multiplied in a specific way (see Humphreys et 
1989a) with the matrix obtained by multiplication of the context (x) and item
(fi) vectors. The latter product defines the "interactive" retrieval cue
representing the association of context and stimulus item. This incorporation
of contextual associations makes it possible to distinguish between episodic
(list-specific) and semantic (preexisting) associations.

Related models have been proposed by Murdock (1982) and Eich (1982;
1985; see also Metcalfe & Murdock 1981). In both Murdock’s Theory of
Distributed Associative Memory (TODAM) and Metcalfe’s Composite
Holographic Associative Recall Model (CHARM), 1 the associative encoding
and retrieval operations are the mathematical operations of convolution and
correlation, respectively (see Eich 1982, 1985).

The TODAM model assumes that when each association A-B is studied, the
vectors representing A and B, and the convolution vector representing A-B,
are all added to a slightly decayed version of the single composite memory
vector that contains all of episodic memory. In this model, recognition
involves matching the to-be-recognized item vector to the memory vector (i.e.
taking the dot product) and using the resulting scalar number as a measure of
familiarity. Recall starts by correlating the cue item vector with the memory
trace, producing a noisy vector containing components representing versions
of all items associated to the cue vector during study. The noisy vector must

~The term "’holographic" refers to the analogy between the properties of human associative
memory and those of holograms (Pribram et al 1974; Willshaw 1981), in particular their
resistance to local damage and the associative properties.
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then be cleaned up to produce a response (say, by comparing the retrieved
vector to a list of separately stored vectors representing items in semantic
memory).

Rather than store vectors, CHARM (Eich 1985) stores autoconvolution
vectors for each single item; these are stored along with the convolution
vector for the association. For all studied pairs, these vectors are summed into
a single composite memory vector. The retrieval operation is correlation, as in
TODAM. In CHARM, a probe with A retrieves a composite noisy version of
all items eonvolved with A, including A itself, so that item and associative
information are not independently retrieved (as they are in TODAM). 
usual, the trace must be cleaned up to generate a response in a recall task.
Recognition can be accomplished by comparing the retrieved vector to the test
vector.

The second class of composite/distributed model explicitly incorporates
processes of node activation (often thought of as short-term memory) as well
as weight modification (the set of weights representing long-term memory),
both processes typically being nonlinear. The complexities introduced have
led most investigators to explore these models in the form of computer
simulations (with the notable exception of James Anderson and Steve Gross-
berg -- see below). Such models are often described by the terms "con-
nectionist" or "neural net." Most applications have been to learning phe-
nomena, categorization and classification, or perceptual phenomena, but
some discussion of applications to memory is useful.

Consider first a representative back-propagation model (Ackley et al 1985;
Rumelhart et al 1986). This model assumes a 3-1ayer representation: a layer of
input units or network nodes, a layer of output units, and a middle layer of
so-called hidden units. Activation is fed from the input units to the hidden
units (using a nonlinear transform) and from these to the output units. All
connections between layers have weights that determine how much the activa-
tion of a particular, say, hidden unit depends on the activation of a particular
input unit. The basic rule of the back-propagation model is that these weights
are adjusted during training in order to optimize the correspondence between
predicted and actual output vectors (the back-propagation algorithm performs
a kind of least-squares fitting procedure). One can use such a model to
perform recognition and recall in a number of ways; perhaps the simplest is to
have each input association attempt to reproduce itself at the output layer.
Then a subsequent test with an item will tend to produce a noisy version of the
association containing that item at the output layer. Recognition can be
accomplished by matching, and recall by cleaning up the trace in some
fashion.

These networks can represent virtually any computable mapping from input
to output layer (given enough hidden units). However, for our purposes the
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important issue is how such a mapping is learned and retained under various
conditions. These aspects have been considered by McCloskey & Cohen
(1989) and Ratcliff (1990).

McCloskey & Cohen (1989) showed that in two-list recall tasks the back-
propagation model suffers from "catastrophic forgetting": The second list
leads to almost complete forgetting of the first list. Similar problems were
uncovered by Ratcliff (1990), who analyzed the model’s predictions for
recognition memory. This result is understandable if it is realized that these
neural net models adjust the connection weights to fit the most recent stimuli,
and that it is assumed that the inputs during the second list are of second-list
items only. At the start of second-list learning, the weights will be configured
optimally for the first list. However, there is no mechanism in the model that
will keep the weights from obtaining completely different values, optimizing
the "recall" of the second-list items. Hence, after a few training trials on the
second list, the network will have "forgotten" the first-list items. Ratcliff
(1990) also showed that this model fails to predict a positive effect of amount
of learning on the dI measure for recognition. [Ratcliff also showed that
several related models, including the auto-associative model proposed by
McClelland & Rumelhart (1985)---see below, failed to resolve the problems.
Research going on at the time of this writing suggests a number of new
approaches that might work; e.g. Sloman & Rumelhart (1992); Kruschke
(1992); Lewandowski (1992). Below we discuss Grossberg’s ART model,
which deals with the problem explicitly.]

The back-propagation models are "feedforward" networks: Activation
flows only forward through the system (the amount of error is in a sense
propagated backwards through the system in order to adjust the weights
appropriately, but this should not be confused with the flow of activation). On
the other hand, a number of models are recurrent: Activation that leaves a
node can be fed back to that same node, possibly after flowing through a
number of intermediate nodes, and the process typically continues until a
stable pattern of activation results. (The BSB model has this character, though
we did not discuss the dynamics of activation.)

Consider first the McClelland & Rumelhart (1985) model. In brief, a set 
nodes accepts input from external sources and is fully interconnected (except
that nodes do not directly activate themselves) by directional links having
weights. Activation moves through the system driven by the sum of the
external and internal inputs to a node, until a stable pattern is reached. Then
weights are adjusted so as to reduce the difference between the internal and
external input to each cell (so that the network will try to reproduce its
external inputs). Recognition can be accomplished by matching an input to
the stable pattern of activation it produces, and recall by cleaning up the same
stable pattern in some fashion.
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Finally, consider the recurrent ART models of Grossberg (e.g. Grossberg
& Stone 1986, although the original models date back before 1970). We
describe here a greatly simplified version of the theory to give the flavor of the
approach. Memory consists of a series of ordered layers of nodes. Consider
just two layers, with perceptual inputs to layer 1, (and, in general, top-down
inputs to layer 2). In addition, weighted links exist in both directions between
nodes in the two layers, and activations pass in both directions along these
links. Within a layer, there may also be connections, but these are inhibitory
and do not carry activations directly. The two layers pass activation rapidly
back and forth until a stable result is achieved. Because of inhibition within
layer 2, a single node will come to be active in this layer, in stable resonance
with a pattern of activation on the nodes in layer 1. The stable pattern may be
used for recognition or recall in ways similar to those we have discussed
already.

A particularly noteworthy feature of the model is its method for picking the
single active node in layer 2. The pattern of activations sent down from this
node to layer 1 is compared with the pattern in layer 1. If these do not match
well, the currently active layer 2 node is turned off, the system resets, and a
new node in layer two wins the competition. This continues until a good
match is found, until a node not yet used as a template for a pattern is found,
or until no nodes are left, in which case all layer 2 nodes become inactive. The
result is that different patterns are assigned new nodes, and new learning does
not harm old learning in the destructive fashion of other models of this class.

The weights on the links change continuously also, but at a much slower
rate than the activation changes. The upward weight changes are made so as
to reduce the difference between a weight itself and the signal passed upward
along that link. Thus a set of weights leading to a single active node comes to
correlate with the activation pattern in the nodes. Also the downward links
from the active node are adjusted to match the activation pattern in the layer 1
nodes, so that top-down templates of the presented patterns are learned. The
weights leading to and from any one layer 2 node come to encode a set of
highly similar patterns, so that each node in layer 2 can be thought of as a
category prototype. A particularly noteworthy feature of this system is the fact
that the system can have a distributed representation at some levels (e.g. level
1) and a potentially separate representation at other levels (e.g. layer 2).

Differences and Similarities

In this section we compare the various models on a number of important
theoretical dimensions. Although the various approaches we have considered
are superficially quite different, basic phenomena are often explained in a
similar manner, albeit using different terminologies. Here we focus on the
basic issues concerning the conceptualization of memory processes. The
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discussion deals with issues as if they were independent, but it is important to
remember that no one of the hypotheses discussed below can be right or
wrong in isolation; each must be analyzed in the context of the model in which
it is embedded.

SEPARATE VS COMPOSITE MEMORY TRACES The question here is whether
the model assumes that different items are stored in separate traces or in one
composite memory trace. Whether this is a meaningful theoretical distinction
depends on a number of auxiliary assumptions in the models in question. For
example, Shiffrin & Mumane (1991) showed that an arbitrary number 
events can be stored in a single number on a single link in a way that allows
each event to be retrieved without error. The method is not a physically
realizable one, however. Plausible composite systems, incorporating the
equivalent of neural noise, all seem to have at least one testable property:
When the system is densely composite, then the storage of new inputs, or
even the repetitions of old inputs, tends to degrade the representations of other
old inputs. Ratcliff et al (1990) tested this notion empirically and found that
repetitions of some list items did not reduce recognition performance for other
list items (see also, Murnane & Shiffrin 1991).

Shiffrin et al (1990) looked at the implications for extant models. All
then-current models were found wanting. They concluded that composite
models dense enough to predict forgetting caused by the composition property
could not predict the findings. They concluded that models positing separate
traces had the potential to predict the results, and they developed a variant of
the SAM model that did so. This variant assumed that repetitions were
accumulated in a single trace (a kind of local composition hypothesis--see
below). It also incorporated a "differentiation" hypothesis: Suppose two
different items A and B were not rehearsed together. If B is stored in memory
more strongly, then A used as a cue will tend to activate it less.

A more local composition issue concerns whether two separate pre-
sentations of a given item are encoded separately or in the same trace. That is,
if an item is repeated, does the second presentation lead to a strengthening of
the originally formed trace, or will a new trace be formed?

MINERVA 2 assumes that each separate encoding of a single item (repeti-
tion) leads to a separate episodic memory trace, ACT* assumes that repeti-
tions strengthen a given trace, and the early versions of SAM were somewhat
ambiguous about this point. Recently (see Raaijmakers 1991), the SAM
model has been extended to deal specifically with the effects of repetition and
the spacing of repetitions. In this version, a kind of study-phase retrieval
assumption has been added to the model. That is, on the second presentation
an (implicit) retrieval attempt occurs. If the trace representing the first presen-
tation is retrieved, it is assumed that the new information will be added to the
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"old" memory trace; otherwise, a new trace will be formed. In addition,
Shiffrin et al (1990) had to assume a strengthened trace to explain the lack of 
list-strength finding in recognition.

This view gained support from a study by Mumane & Shiffrin (1991). They
tried to induce separate storage of a repeated word by embedding it in
different sentence contexts; this manipulation produced the expected positive
list-strength effect in recognition. Evidence of a different sort supporting this
view arises from a study by Ross & Landauer (1978). They showed that the
traditional spacing effect only occurs for the probability of recalling single
items presented twice and not for the probability of recalling either one of two
different items each presented once. This result seems to require that repeti-
tions of an item should be treated differently from the case of multiple items,
each presented once (although firm conclusions depend on the details of each
model).

REPRESENTATIONAL ISSUES We consider three representational aspects: 1.
the nature of the information encoded in the memory trace, 2. whether links
between memory traces are assumed, and 3. the representation of "associative
strength."

The models we have considered differ in their assumptions about the
information encoded in the memory trace. In the all-or-none activation model
ACTE of Anderson (1976), storage of a simple pairwise association involves
the formation of a new link between pre-existing network nodes. In the ACT*
model, what is stored is a cognitive unit representing the episodic experience.
It is assumed that such a new network node has associative links with nodes
representing the constituent parts of the item--i.e. (in this case) stimulus,
response, and list context. In ACT*, associative strength is represented
simply by the strength of the memory traces. As described above, these
strengths determine the amount of activation that spreads to the trace from
associated nodes.

SAM and MINERVA 2 also assume that the trace represents the "episodic
experience" but are less specific about the exact nature of what is stored. The
original SAM model focused on the relation between cues and images:
Associative relations are represented by a "retrieval structure" rather than the
more traditional "storage structure." The model does not make use of explicit
associative connections between images, though these are present implicitly
in the following sense: Suppose two items are studied together; when one is
used as a cue the retrieval strength to the image of the other is high. SAM was
not entirely explicit concerning the nature of the "image," though for most
verbal studies an image was based on the individual word. Shiffrin et al
(1989) presented evidence that a good deal more flexibility is needed, and that
a sentence is often a single image (and that, under some circumstances, a pair
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of words is a single image). Thus in principle a pair association could be
stored in two ways: separate images governed by an implicit association that
is represented in the retrieval structure, or a single combined image.

MINERVA 2 assumes that episodic experiences and memory traces can be
represented as vectors of feature values. Since the nature of these features is
left unspecified, this assumption does not really pose any restrictions. It is
noteworthy that MINERVA represents pairs by encoding the component
vectors back to back in a single stored vector. There is a nonlinear activation
process during retrieval that lets the system distinguish whether two stored
items are in the same or different traces.

Finally, what about the models with composite/distributed representations?
The final representation is generally a vector or matrix; it is a composite of
similar vectors or matrixes (or degraded forms of these) stored for individual
items and pairs. The question is how associations and single items are handled
during storage. TODAM has item vectors, and convolutions of item vectors
for associations. Context information could in principle be part of each vector
but in recent work has been treated as a separate vector. CHARM treats single
items as autoconvolutions but is otherwise similar to TODAM in most
respects. The Matrix model treats individual item vectors separately, and
context as a separate vector. Single items are stored as an association matrix
made from the item, context, and a unit vector. Pairs are matrixes made from
the product of the two item vectors and the context vector. One issue left
unresolved for these models is the basis on which some types of information
are encoded in a given vector while other types are singled out for treatment as
a separate vector. For example, how would category information be treated?
(See Humphreys et al 1991 for one possible solution.)

A more general solution to this problem is possible if the various types of
information, and various items to be associated, are all treated as components
of a single vector, or single pattern of activation across a set of nodes. For
example, in the McClelland & Rumelhart autoassociative recurrent model,
and in Grossberg’s ART models, all items to be associated, and related
information, are encoded as a single vector or pattern of activation values sent
to a set of nodes. Anderson’s BSB model, and various versions of feedfor-
ward back-propagation models, use either of two methods. In one method,
similar to those in the recurrent models just mentioned, items to be associated
are encoded together in a single input vector [for example, the model of
Ackley et al (1985) tries to reproduce at the output layer the vector presented
to the input layer]. All such models use a pattern-completion property to
retrieve associates. In the second method, the items to be associated are
treated as separate vectors; for example, the input layer could encode one item
and the output layer could encode the associated item (J. A. Anderson et al
1977).
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CONTEXTUAL ENCODING Any model that is designed to explain data from
episodic memory experiments must somehow account for the fact that a
paired associate item such as apple-engine can be learned despite the presence
of strong competitive semantic associations (apple-pear). It seems highly
unlikely that one or two presentations of a list would create such a strong
association that it dominates the pre-experimental associations. Thus, subjects
are able to learn different associative relationships in different situations. This
contextual dependence is a fundamental property of episodic memory.

It therefore seems highly desirable for a model of memory to have some
means of selectively accessing memory traces stored under particular tempor-
al or contextual conditions. Note that a simple recency-based mechanism will
not suffice--subjects can access information from contextually identifiable
periods in the past. To give just one example, subjects are able to access
selectively not the list learned most recently but the list learned prior to that
(Shiffrin 1970; Anderson & Bower 1972).

Most models incorporate contextual associations as the means to focus
retrieval processes in episodic memory, either by including the contextual
information in the memory trace or by treating the contextual information as a
separate item. Whether this alone will suffice is an open question. For
example, ACT* and MINERVA 2 assume an additive rule for combining the
associative strength due to context and item. Such a rule may not have a
sufficiently strong focusing effect to eliminate strong interference by pre-
experimental associations. The multiplicative combination rules used, for
example, in SAM and the Matrix model are such that retrieval is focused on
those traces (or those components of the composite trace) that are consistent
with the context at test. Even a multiplicative rule may not, by itself, be
sufficient to focus retrieval properly. For example, Humphreys et al (1989a)
call attention to crossed-associates lists, in which the subject is asked to learn
pairs like doctor-king and queen-nurse. Versions of the SAM model in which
individual words (but not pairs) have a single (semantic) memory representa-
tion would not easily predict the learning seen in such cases. However, SAM
models typically assume that images are episodic in nature, not semantic.

It should be no surprise that models that do not incorporate context will not
fare well. For example, a model that does not include a way to reduce the
effect of irrelevant associations will have serious problems explaining why the
interfering effect of the number of items on a single experimental list is not
completely swamped by the millions of previously acquired associations. A
simple forgetting assumption, e.g. a reduction of strength for previous asso-
ciations (as in TODAM), will not do the job without added assumptions about
context: The strong empirical list-length effects would require too rapid and
massive forgetting.
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STORAGE The issue we focus on here is the predicted effect of increasing
study time for a list. TODAM, CHARM, and the Matrix model provide
examples of models in which simply adding more copies of each trace to
memory may not improve memory: Both the mean and standard deviation of
the retrieved signal rise together in such a way that performance does not
change (Murdock & Lamon 1988; Shiffrin et ai 1990). At least two
approaches have been used to solve this problem. Hintzman (1986, 1988) and
Murdock & Lamon (1988; see also Murdock 1989) have proposed a prob-
abilistic encoding assumption: Each feature of an item is encoded (stored)
with a probability p that rises with presentation time. If not stored it is given a
neutral value (or in a variant discussed by Shiffrin et al 1990, replaced by 
random value). Eich (1985:28) proposes a variant in which all features of 
item are either encoded or not (all-or-none encoding). In all these variants,
both repetitions of an item and increased study time will improve storage
relative to variance in the system, and therefore increase performance.

Shiffrin et al (1990) discuss an alternative way in which these models might
show a learning or repetition effect. This alternative is based on the fact that
performance in these models is related to the signal-to-noise ratio (or dl).
Since d’ measures the ratio of mean signal strength to the standard deviation,
d’ can show an increase with repetition if a constant is added to the standard
deviation. The reason for this is that the standard deviation will no longer be
completely proportional to the mean signal strength. It is natural to suppose
that the constant represents activation of traces or trace components from lists
other than the one being tested, or from extra-experimental memory. (More
generally, this assumption may prove useful in all models because it lessens
the effect of list variables like list length and study time in accord with the
amount of extra-list activation).

The remaining models predict performance increases with repetitions or
study time for fairly obvious reasons: storage of stronger associations in SAM
or ACT*, or weight changes that produce better encoding in the neural net
models.

RETRIEVAL One of the major differences among the models discussed here
concerns the manner in which the retrieval process produces a recalled item.
In SAM separate traces are accessed separately, so the recovered information
can be compared to a standard lexicon; SAM doesn’t provide any details of
this process but simply assumes the probability of successful recall rises with
the strength of the cues to image relationship. The ACT models use similar
probabilistic rules. MINERVA 2 also has separate storage but retrieves a
composite. This composite could be compared with the individual stored
traces, but this seems unsatisfactory because recognition is also assumed to be
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a composite process. Hintzman (e.g. 1988) proposes a somewhat more
satisfactory solution in which the composite retrieved vector is used as a
subsequent retrieval cue, the process continuing in this way until the retrieved
vector comes to represent an unambiguous item. ART also has separate
storage, and test probes come to activate some single node in at least one
layer; this node sends down a pattem of activation that could itself produce a
clear recall, or (if it is a category node rather than a single item node) could 
compared to separately encoded patterns elsewhere in the system.

The models that assume composite storage and retrieval face a greater
problem: How is the noisy retrieved trace cleaned up to allow an unambiguous
recall? TODAM, CHARM, and the Matrix model assume a lexicon of
separately stored items to which the retrieved trace can be compared. This
solution tends to dilute the composite character of these models. The remain-
ing connectionist and neural net models do not offer clear solutions for cases
in which the retrieved trace is noisy enough to be ambiguous. Typically a
probabilistic recall rule is adopted, based on the match of the retrieved trace to
possible responses. If the model is fully composite, however, it is not entirely
clear where the comparison stimuli lie.

A second issue involves whether the retrieval process is assumed to be
probabilistic or not. Both ACT* and SAM assume a probabilistic retrieval
process. In these models, an item that was not retrieved on a first retrieval
attempt may still be retrieved if an additional attempt at retrieval is made. (In
SAM it is usually assumed, however, that at least one new cue must be used
for a subsequent retrieval to have a chance at success.) The other models, on
the other hand, are such that a second attempt will always lead to the same
result (unless the cues are changed, or have added noise (see McClelland
1991).

Finally, only a few models (namely SAM and the convolution/correlation
model of Metcalfe & Murdock 1981) have been applied to extended search
processes as in free recall, in which the subject uses a number of different
retrieval cues in order to maximize recall. It might be argued that the search
strategies that are probably involved in these paradigms are not part of the
"basic" or "elementary" memory processes. However, such a viewpoint does
not do justice to the fact that many real-life situations do involve this type of
unstructured memory retrieval.

FORGETTING Let us define forgetting as a failure to retrieve information
from memory at time B when it was retrievable at an earlier time A, or as a
decrease in the probability of retrieval. There seem to be three basic ways in
which forgetting might occur: 1. a decrease in the "strength" of the memory
trace--i.e, decay; 2. an increase in competition by other, interfering, traces
(or items); and 3. a change in the nature of the cue between time A and time
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B--i.e. a change in the (functional) stimulus. There does not seem to be any
difference between the models with respect to the third aspect, although not
all of them have explicitly dealt with it. Mensink & Raaijmakers (1988) have
used this idea in their application of the SAM model to interference and
forgetting. In this model, part of the forgetting was assumed to be caused by
contextual changes--i.e, changes in the contextual cues between study and
test.

MINERVA 2 (Hintzman 1988:532) and TODAM (Murdock 1989:77) 
assume that trace information is subject to decay. In TODAM, this is built
into the basic equation of the system (see Murdock 1982, Eq. 1). It should 
noted, however, that this decay assumption differs somewhat from traditional
decay conceptions in that it is related to the storage of new information in the
memory trace: Each time a new item is added to the composite memory trace,
a fixed proportion of what was there is lost, producing a strong recency effect
with a geometric character. (It should be noted that this assumed decay is
independent of the interference that is common to all ol~ the composite storage
models, including TODAM.) All the memory models considered in this
chapter predict a decrease in performance due to learning other items, and to
learning other pairs of items (in both AB-AC and AB-CD type tasks), the only
general exception occurring when the other items are rehearsed or coded
jointly with the items in question. In general, several mechanisms in each
model help produce interference; these mechanisms may be different for
different tasks (as in SAM), and the mechanisms may differ between models.
We mention here a few of the more interesting differences among the models.

Most composite models incorporate explicit interference due to the super-
imposed storage assumptions. When vectors or matrixes are added together,
or when a set of weights are jointly adjusted for each new input, the result
tends to be degradation of the representations of each item. There are of
course exceptions to this rule: If memory is large enough relative to the size of
the inputs, then storage might be effectively separate (the amount of
superimposition might be minimal; see Kanerva 1988), or if the inputs are
orthogonal enough, or if the system orthogonalizes or separates the inputs
(e.g. Grossberg’s ART models), then interference would not be mandated 
the factor of composite storage.

The remaining sources of forgetting are posited to arise during the course of
retrieval (in SAM these are the only sources of forgetting). SAM assumes
summation of activations at retrieval to accomplish recognition; as a conse-
quence, extra items cause forgetting by increasing "noise." In MINERVA,
composition during both recall and recognition causes interference due to
increasing noise. One chief remaining cause of interference is based on the
relative strength of storage of different items. For example, in SAM, sam-
piing in recall is based on a ratio of activation strengths. Reduction in relative
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strengths of targets due to extra items also plays an important role in many of
the models under discussion, especially the ACT models. This factor plays a
chief role in accounting for list-length, fan, and cue-overload effects.

APPLICATIONS TO PARADIGMS

In this section, we compare the ways the various models predict certain basic
findings in memory research, both qualitative and quantitative.

Cued Recall

Cued recall is the basic paradigm for associative memory, and the present set
of models have been formulated so that cued-recall predictions can be made.
ACT* and CHARM have been applied more or less exclusively to cued-recall
data. In addition, ACT* and SAM have been shown to be able to account for
both latency as well as accuracy data in cued recall (Anderson 1981; Mensink
& Raaijmakers 1988).

List Length

All the models are capable of handling the basic list-length effect. However,
in some models (TODAM, CHARM) no distinction is made between (a) 
to-be-recalled list and (b) extra-list and extra-experimental information. When
list length is predicted to have an effect, it does so because retrieval is
restricted to the to-be-recalled list (without explanation). This seems un-
satisfactory, and the natural way to resolve the difficulty would be the
adoption of some form of contextual cuing (as is the case with other models).

However, whether a contextual cue is used may be less important than how
it is used. A typical multiplicative rule for cue combination tends to focus
access upon regions of memory in the intersection of the sets of memory
traces evoked by each cue separately, whereas a typical additive rule tends to
access traces in the union of these sets. Humphreys et al (1991) argue
convincingly for the intersection approach, implying that "strengths" or
"activations" should be acted upon in a way functionally equivalent to multi-
plication (as in the SAM model, the Matrix model, etc) rather than addition
(as in ACT*).

This type of explanation of list-length effects sees such effects as an
example of a more general effect--i.e, that the efficacy of any probe cue is
inversely related to the number of memory traces or items associated to that
probe cue (which might be called the length of the list of associated items).

Interference and Forgetting

The basic issues here are the effects of different types of interference (i.e.
AB-AC vs AB-CD), mechanisms for (relative) spontaneous recovery, single-
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list forgetting paradigms, and whether or not some sort of decay notion is
used. ACT*, SAM, and CHARM have all been explicitly applied to such
phenomena.

Anderson (1983a) and Mensink & Raaijmakers (1988) show that 
results in this area necessitate the assumption that recall is based on both
relative and absolute associative strengths. Relative strength is a function of
the number and strength of other associations, while absolute strength is
indexed by the amount of study time or the number of presentations of an
item. In ACT*, absolute strength comes in through the assumption that trace
formation is more likely as the total study time increases. In SAM, absolute
strengths determine the probability of recovering enough information from the
trace to give the name of the item as a response.

Mensink & Raaijmakers (1988) present a theoretical analysis of traditional
interference phenomena. They show that modem memory models such as
SAM can reconcile phenomena that have been problematic for traditional
interference theories. Such analyses bring out a number of tacit assumptions
in the typical verbal (i.e. nonquantitative) models that are not usually noted.

Free Recall

This paradigm is more complex than cued recall. This is due to the fact that it
necessitates not only an exact formulation of the relation between STS/
working memory and long-term memory but also a description of search/
retrieval strategies. Only a few of the models have dealt explicitly with such
data. We briefly discuss predictions by SAM (Raaijmakers & Shiffrin 1980)
and an early version of the CHARM model (Metcalfe & Murdock 1981).

SAM assumes that contextual and inter-item associations are built up as a
result of rehearsing the items in STS. A buffer process (Atkinson & Shiffrin
1968) is used to model the rehearsal process. Retrieval starts by outputting
any items still in STS. Thereafter the retrieval process is modeled as a series
of retrieval attempts either with the context cue alone or using both context
and a previously retrieved item as probe cues. This process continues until the
number of failed searches reaches a specific criterion.

One of the strong points of the SAM model is that it handles with a single
set of parameter values data from lists with large variations in presentation
rate and list length. The latter result is predicted because the search termina-
tion criterion is exceeded sooner for the longer lists, relative to list length:
Relatively fewer samples are made from a longer list than from a shorter list.
This prediction is characteristic of sampling-with-replacement search models
with a fixed stop criterion. It also subsumes the cue-overload principle
proposed by Watkins (1975; see also Mueller & Watkins 1977; Watkins 
Watkins 1976). This principle states that the probability of recalling any
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particular item decreases with the number of instances associated to the
retrieval cue.

Although the Metcalfe & Murdock t1981) free-recall model is described in
the terminology of the convolution-correlation model, the actual simulation
model does not in fact use the mathematical operations of convolution and
correlation. Instead, all-or-none associations are stored between list items,
and between list items and context (treated as a list item). When an item 
used as a cue, a random choice is retrieved perfectly from the stored associ-
ates, if any.

The rehearsal process is conceptualized as a continuous cuing of the
memory vector with the currently available item. Thus, when an item is
presented, it is associated to the item that is currently available (context at the
start of the list). Then the just-presented item is used as a cue to generate an
item to which it has been associated, and then this item is used as a new cue,
etc. This continues until the next item is presented, which is then associated to
the item that is currently available.

At the time of recall, the last rehearsed item is recalled and used as a cue to
generate another item; then this item is itself used as a cue, and this continues
until a certain criterion period has passed without any new items being
recalled. At that point, context is reinstated as a cue and the process begins
anew and continues until the criterion period passes for the second time
without any new recalls.

Each of these models predicts serial position effects. Since the SAM model
is based on the two-store framework, it should not come as a surprise that it
makes many of the same predictions as the classic two-store model (see
Atkinson & Shiffrin 1971; Raaijmakers & Shiffrin 1980), and for the same
reasons: Primacy is predicted because of the cumulative rehearsal assumption,
while the output from STS leads to a recency effect. Although the two-store
model is often described in textbooks as having problems handling data on
levels-of-processing and recency effects, this is in fact not correct (see
Raaijmakers 1991).

The Metcalfe-Murdock model has a quite different flavor. In this model,
the shape of the serial-position curve is critically determined by the cues
available at recall. Recency is predicted because the last-presented item is
recalled first and then used as a cue. This item is assumed to be the optimum
entry point into the end of the list. The disappearance of the recency effect by
the introduction of a delay between presentation and test is explained by the
assumption that rehearsal continues during the delay.

Hence, at the end of the delay the currently available item will most likely
be some item other than the last item on the list. The optimum entry point for
recall of the last few items is therefore lost. This explanation seems unlikely
since providing the subject with the terminal item after the delay interval

www.annualreviews.org/aronline
Annual Reviews

http://www.annualreviews.org/aronline


MEMORY MODELS 225

should reinstate the recency effect. (Another problematic aspect is the
assumption that rehearsal continues during the delay filled with arithmetic.)

Primacy is predicted by this model because context is used as a retrieval cue
(in the second phase of the recall process), and context is nearly always
relatively strongly associated with the first item. Thus, this explanation is
quite similar to the typical two-store explanation of primacy as being due to
stronger traces for the initial items (in this case being more strongly associated
to context).

One of the more important advantages of the recent work on models of
memory is that it has led to model-based simulation programs for specific
experimental tasks. These programs can then be used to see how the model
behaves under specific experimental conditions. This is especially important
in free recall since this paradigm does not lend itself easily to analytic
approaches.

One aspect of the data where this has been proven helpful is in the analysis
of the effects of various types of cuing manipulations of the likelihood of
recall. We mention two: the (positive) effects of category cues and the
(negative) effects of cuing with randomly selected list items (the so-called
part-list cuing effect).

Raaijmakers & Shiffrin (1980) showed that typical effects of cuing with
category names could be easily predicted by the SAM simulation model.
These predictions do not greatly depend on the specific assumptions of SAM
(vis-~t-vis alternative models). Such analyses are, however, important to show
that observed effects are indeed consistent with particular theoretical
frameworks.

This is even more the ease in the part-list cuing paradigm. In this paradigm
subjects are given some randomly selected items from the list as cues for the
remaining list items. The typical finding is that such cuing leads to a slight but
unexpected decrease in the probability of recall for the remaining items.
Raaijmakers & Shiffrin (1981) spent a good deal of effort analyzing this
peculiar effect within their SAM simulation of free recall. They showed that
this counterintuitive effect was in fact predicted by the model. In addition to
the basic result, a number of related findings were predicted. These included
the effect of the number of cues, the time at which the cues were given, and
the effect of interpolated learning (between presentation and test). Raaijmak-
ers (1991) shows that the model predicts a reversal of the cuing effect if 
delayed testing procedure is used. This prediction is indeed borne out. This
research has also shown that it is by no means easy to intuit the predictions of
a relatively simple model such as SAM in a complicated experimental situa-
tion.

This part-list cuing effect has also been dealt with by Metcalfe & Murdock
(1981). However, in their simulation it was assumed that the list cues were
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not actually used by the subject. This assumption makes it relatively easy to
predict a negative effect of cuing but does not make much sense given the fact
that most subjects will expect the cues to be helpful (as did most memory
specialists). In addition, such an approach makes it impossible to predict 
reversal of the cuing effect in delayed cuing.

Note, however, that these problems are not due to the basic structure of the
convolution/correlation model (which was in fact put aside) but to the
assumptions that are made concerning the subject’s strategy. This illustrates
that predictions for free-recall tasks depend critically on the strategy used--
i.e. on the assumptions made concerning the sequence of cues to be used in
retrieval. Gronlund & Shiffrin (1986) examined the effects of various retrieval
strategies on recall from natural categories and categorized lists. They showed
that different strategies indeed have an effect on recall performance. This
result POSES two problems for any model for free recall. First, it makes it
problematic to apply a specific (arbitrary) version of the model to the data of 
group of subjects, unless it can be shown that the result of interest is
insensitive to the choice of strategy or that the subjects all use a similar
strategy. Second, given a specification of retrieval strategies (i.e. in terms of
the sequence of cues that are used), the model should be able to give 
quantitative account of the resulting performance differences. Gronlund &
Shiffrin (1986) show that a simple extension of SAM could account for the
observed differences.

Recognition
Most current models of memory assume that simple recognition decisions are
based on some sort of global familiarity value. By this we mean that the
familiarity value is a kind of weighted, additive combination of the activation
of all items in memory. This global familiarity value is determined by the
match between the probe cues and the memory trace(s). This general type 
model has been termed the General Global Matching Model (GGMM, Hum-
phreys et al 1989b) or the Interactive Cue Global Matching (ICGM) model
(Clark & Shiffrin, submitted). As these labels imply, such models differ from
previous local matching models in that all items in memory are involved in the
match, not just the representation of the tested item. In this section we
consider some of the data used to test these models.

Pair Recognition
Pair recognition has been used as an experimental paradigm to test aspects of
recognition models. Basically, the issue here is the way associative informa-
tion is assumed to contribute to recognition decisions. In these experiments
the subject first studies a list of word pairs (AIBI, A2B2 .... ). At test, intact
pairs (A~i) have to be discriminated from rearranged pairs (A.,Bj), mixed pairs
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(A/X), and/or new word pairs (XY). These results may be compared to those
obtained in single item recognition (Aivs X) and/or cued recognition (Ain i VS

A.,X where only the second item has to be judged; see Clark & Shiffrin
submitted). Humphreys et al (1989b) show that all extant versions of 
global matching model (SAM, MINERVA 2, Matrix, and TODAM) lead 
similar equations for the mean matching strengths. This would seem to imply
that it will be difficult to differentiate between these models. However,
predictions for d’ depend not only on the mean strengths but also on the
variances. Furthermore, it may be possible to distinguish between the models
if one also takes the predictions for single-item recognition and cued recogni-
tion into account.

Clark & Shiffrin (submitted) examined the predictions for all types 
recognition tests. They show that the models differ with respect to whether
they predict an advantage for cued recognition compared to single-item
recognition. The results of their experiments were reasonably well predicted
by TODAM and SAM, with TODAM producing the best fit. MINERVA 2
and the Matrix model did not fit the data well. One problem with such data,
however, is that it might very well be the case that subjects make use of recall
processes in addition to global matching. That is, the logic of the models
allows subjects to supplement global matching with recall.

Gronlund & Ratcliff (1989) pointed to another problem for global matching
models. They examined the time course of the availability of item and
associative information using a response-signal procedure (Reed 1973, 1976;
Dosher 1976). In this procedure, a recognition decision must be made at one
of several predefined times after the onset of the test stimulus. With this
procedure it is possible to determine the growth of accuracy as a function of
processing time. Gronlund & Ratcliff showed that item information becomes
available sooner than associative information. This poses a problem for global
matching models since these treat these two types of information as insepar-
able. To accommodate the results, separate contributions of item and associa-
tive information are required, possibly by distinguishing between concurrent
and compound usage of cues (see Gronlund & Ratcliff 1989). That is, it might
be assumed that memory is probed in parallel with an interactive, compound
cue and with the item cues separately. As an alternative, it might be the case
that pair images are sometimes stored, and that the time course of pair-image
activation differs from that of single-item image activation.

List Length vs List Strength

Recent research by Ratcliff et al (1990) has focused on the effects of the
strength of other list items on the recall and recognition of target items. This
so-called "list-strength effect" concems the effects of strengthening (or
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weakening) some list items upon memory for other list items. Ratcliff et al
(1990) showed that strengthening some items in the list decreases recall of the
remaining list items but has no or even a positive effect on recognition
performance. This contrasts with the list-length effect: Adding items to a list
decreases both recall and recognition performance. Thus, the number of
irrelevant items, but not their strength, affects recognition. This is true not
only for strength variations due to amount of study time but also for variations
due to spaced repetitions.

This peculiar result should have a number of consequences for models of
recognition. In particular, it will be necessary to assume a structural differ-
ence between presentation of two different items and two presentations of a
single item. Shiffrin et al (1990) showed that current memory models indeed
cannot predict both the presence of a list-length effect and the absence (or
reversal) of a list-strength effect.

Shiffrin et al (1990) also investigated whether the various models could 
modified to enable prediction of these results. Such modification does not
seem possible for models that assume items are stored in one composite
memory trace. Even considering recognition only, these models cannot pre-
dict both a positive list-length effect and an absent or negative list-strength
effect when strength variations are due to spaced repetitions. Models such as
SAM and MINERVA 2 that assume separate storage are in principle better
equipped to handle these results, although they too will have to be modified to
enable prediction of negative list-strength effects.

Shiffrin et al (1990) show that a modification of SAM can handle these
results. In this modified SAM model it is assumed that different items are
stored in separate traces but repetitions of an item within a list are stored in a
single memory trace. Second, the variance of activation of each separate
trace, when the cue item is unrelated to the item(s) encoded in the trace, 
constant regardless of the strength of the trace. The latter assumption is
inconsistent with previous formulations of SAM but is defended using a
differentiation argument: The better the image is encoded, the clearer are the
differences between it and the test item, and hence the lower the activation. In
this way, a constant or even decreasing variance may be predicted, depending
on the weighting of context and item cues.

A crucial aspect of this explanation is that repetitions of an item are
assumed to be stored in a single memory image. To evaluate it further,
Murnane & Shiffrin (1991) tested whether a reversal of the list-strength effect
in recognition occurs if repetitions are presented in such a way that they are
likely to be encoded in separate images. They found that repetitions of words
in different sentences produced a list-strength effect whereas repetitions of
entire sentences did not. This demonstrates that the nature of the encoding of a
repeated item is a crucial factor.
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Evaluating the Models

In this chapter we have shown that current mathematical models of memory
are capable of handling many classical and new findings in recall and recogni-
tion. We suggest that models of this type are superior to verbally stated
theories of memory. Arguments in favor of the modeling approach include
these: 1. the ability to predict the size (and not just the direction) of the effect
of experimental factors, 2. the ability to predict the effect of combinations of
experimental factors, 3. the ability to examine the combined result of theoreti-
cal assumptions, 4. the fact that a model (especially in the form of 
simulation program) can be used to "experiment" with processing or strategy
assumptions to determine the crucial variables that underlie a given predic-
tion, and 5. the fact that models often demonstrate the limitations of more
intuitive reasoning.

Such a conclusion is, however, often criticized on the ground that general
models of memory of the type discussed in this chapter are too versatile. That
is, the models usually incorporate a relatively large number of processes and
parameters that seem to enable them to predict almost any type of empirical
result. In addition, it is often difficult to intuit what a specific model will
predict in a given situation. This contrasts with the simplicity of typical
verbal, nonquantitative explanations of memory phenomena. In this section
we argue that this difficulty is often more apparent than real.

First, quantitative models also make qualitative predictions that do not
depend on parameter values. That is, in order to evaluate a model’s ability to
predict data, one should not only examine the phenomena that it can predict
but also take into account whether it makes strong, parameter-free predictions
about results that should not occur (no matter what parameter values are
used). Second, if a particular prediction depends on the specific parameter
values used, it should be possible to arrange the experimental situation in such
a way that that particular result is reversed. Third, the argument may also be
turned around: If the ability of a model to predict a particular phenomenon
turns out to depend on parameter values one may well ask whether a corre-
sponding qualitative explanation is in fact logically sufficient. Finally, some
results are indeed complex (i.e. dependent on a number of interacting pro-
cesses) whether we like it or not. In fact, one advantage of quantitative
models of the type discussed in this chapter is that they may be used to see
whether particular "verbal" explanations hold true when tested in the context
of a comprehensive model of human memory. The next sections focus on
specific aspects of this discussion.

Number of Parameters

Current quantitative models of memory frequently incorporate a dozen or so
parameters. These parameters reflect both structural aspects of the memory
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system (decay rates, processing times) and task-related aspects (weighting 
cues, stopping criteria, decision criteria). When a model is fitted to a set of
data, these parameters usually have to be estimated from those data; that is,
they are given values so as to optimize the fit to the data. Although this
procedure can be rigorously defended on statistical grounds, it does seem to
many to involve a bit of cheating. It is probably for this reason that the
relatively large number of parameters in current models is frowned upon.

In many cases however, the number of parameters is not really an issue.
That is, the qualitative nature of the predictions does not depend On the exact
parameter values. Thus, many of the simulations are performed using a single
set of parameter values (see, for example, Metcalfe & Murdock 1981; Men-
sink & Raaijmakers 1988; Hintzman 1988). In those cases where parameter
values do reverse a particular prediction, empirical evidence should be obtain-
able concerning this prediction (see, for example, the prediction of a reversal
of the part-list cuing effect as a function of the contextual strength parameter
in the SAM model; Raaijmakers 1991). Another point is that nonquantitative
models also include parameters--that is, degrees of freedom--although this is
rarely realized. To put this in another way, most explanations for memory
phenomena by models of memory might be formulated in a qualitative way.
In this way, there would not be any basic difference between quantitative and
qualitative models. However, the resulting theories would have lost most of
their explanatory power.

Number of Processes

Most of the difficulties with well-specified quantitative models have to do
with the relatively large number of processes that are usually proposed. This
is especially the case when models attempt t.0 be applicable to a large number
of different experimental paradigms. As emphasized by Smith (1978), there 
a tradeoff between generality and simplicity of theoretical models. The
problem here is that due to the number of processes and the number of
parameters (or quantitative relations) involved in complex memory models, 
is often not possible to make predictions about the behavior of the model
except through quantitative simulations.

An example (drawn from own experience) illustrates this point. When the
SAM model was first applied to the part-list cuing paradigm (see Raaijmakers
& Shiffrin 1981), it was not at all clear whether it would or would not predict
this effect. Furthermore, even after the prediction turned out to be successful,
it was not immediately clear (to say the least) what factors in the model were
causing it.

What this shows is that it is not possible to make intuitive predictions about
the behavior of a model under specific task conditions. However, it should be
evident that a similar problem holds for "verbal" theories of memory. In such
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qualitative accounts it is not clear what the boundary conditions are that apply
to a particular prediction. The lesson that can be drawn here is that much more
effort should be invested in theoretical analyses of the factors involved in
predicting empirical phenomena. Such analyses should focus on the role of
each of the proposed processes in the explanation of a particular phenomenon,

Quantitative, Qualitative, and Semi-Quantitative Fits

Although all the models that we have considered are formulated in a quantita-
tive manner, there is a tendency in current work to restrict the analysis to
qualitative predictions; that is, one analyzes only whether a model predicts the
general direction of an effect, rather than the exact magnitude. In contrast to
the tradition of the 1960s and 1970s, typical goodness-of-fit measures such as
the chi-square statistic do not figure prominently in the typical article that
nowadays presents a formal model of memory.

This poses a problem. On the one hand, it can be defended that one does
not want to focus too specifically on the exact numerical’details of one
particular experiment; on the other hand, it would be desirable at least to look
at the relative magnitude of a particular effect (relative to other predicted
effects). That is, suppose that there are two phenomena of interest, effect 
and effect B, where A is a large effect and B a small (but consistent) one. It 
conceivable that a model would be able to predict both A and B in a qualitative
manner but that it would always predict either A and B both small or A and B
both large. Such a "misfit" would not be detected if the analysis focuses only
on the qualitative aspects.

Fortunately, most presentations of formal models of memory employ a
strategy that falls between these two extremes. The typical approach is to use
a single set of parameters to examine a set of data (or data patterns) that 
representative of empirical findings. Although none of the actual data are
really fitted in the traditional sense, the use of a single set of parameters
makes it possible to verify that the model makes predictions in the right
ballpark in terms of relative effect sizes.

Hence, we may distinguish among three degrees of comparing the model to
actual data: qualitative, quantitative, and what might be called semi-
quantitative analysis. The first involves only the direction of a difference
between conditions; the second involves a direct comparison between the
predicted and observed data using a goodness-of-fit measure; finally, the third
does not involve a goodness-of-fit measure but does look at the sizes of the
predicted and observed effects.

Although real quantitative fits remain a desirable feature, it might be
argued that the proper approach is to aim first for a semi-quantitative predic-
tion of the data. In this phase, the emphasis is on showing that a model can
deal with a variety of findings from different task paradigms. At some point, a
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number of promising models will have been developed. At that stage, the time
seems to be ripe for quantitative tests in which several models may be
compared in terms of goodness-of-fit. We believe that the demonstrated
potential of current models of memory justifies the expectation that future
work in this area will involve more comparative, quantitative testing.

Quite recently, John Anderson (1990; see also Anderson & Milson 1989)
has proposed a model that attempts, in a sense, to meld some of the best
features of the two approaches we have been contrasting (detailed, formal,
quantitative, process models vs general, verbal, descriptive models). His
"Rational" model bypasses details of representation and process to the great-
est possible degree, and instead is aimed at the general proposition that
memory is organized so as to solve the memorizer’s problems in an optimum
fashion. In any given retrieval situation, it is assumed that each event stored in
memory has a number assigned to it representing its probability of being
relevant (containing the desired information). It is assumed that these events
are searched in order of their relevance, either until a retrieval occurs or a
stopping criterion is reached. The probabilities are based on two multi-
plicative factors: the past history of an event’s usefulness (independent of the
cues used to probe memory) and the likelihoods of relevance associated with
the cues. So far only the barest hints of applications to memory paradigms are
available. It is interesting that the model operates at a very abstract level and
yet offers quantitative predictions for certain phenomena. Although initial
results are intriguing, it is far too early to assess the long run usefulness of the
approach.
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